Befehl |Operand |Wirkung

ACI konstante [addiere zum Akku die Konstante und das Carrybit
ADC register addiere zum Akku ein Register und das Carrybit

ADD register addiere zum Akku ein Register

ADI konstante [addiere zum Akku die Konstante

ANA register bilde das logische UND des Akkus mit einem Register
ANI konstante |bilde das logische UND des Akkus mit der Konstanten
CALL |adresse [rufe ein Unterprogramm unbedingt

CcC adresse [rufe Unterprogramm nur, wenn das Carrybit 1 ist

CcM adresse [rufe Unterprogramm nur, wenn das Vorzeichenbit(S) 1 ist
CMA komplementiere den Akku (Einerkomplement)

CMC komplementiere das Carrybit

CMP register vergleiche den Akku mit dem Register (Testsubtraktion)
CNC adresse [rufe Unterprogramm nur, wenn das Carrybit O ist

CNz adresse rufe Unterprogramm nur, wenn Ergebnis ungleich Null ist
CP adresse [rufe Unterprogramm nur, wenn Vorzeichenbit (S) 0 ist
CPE adresse rufe Unterprogramm nur, wenn Paritatsbit 1 ist

CPI konstante |[vergleiche Akku mit der Konstanten (Testsubtraktion)
CPO adresse [rufe Unterprogramm nur, wenn Paritatsbit O ist

cz adresse rufe Unterprogramm nur, wenn Ergebnis gleich Null ist
DAA korrigiere den Akku im BCD-Code

DAD reg.-paar |addiere Registerpaar zum HL-Registerpaar (16 Bit)
DCR register vermindere Register um 1

DCX reg.-paar |vermindere Registerpaar um 1 (16 Bit)

DI sperre alle Interrupts (Interrupt-Flipflop = 0)

El gib alle Interrupts frei (Interrupt-Flipflop = 1)

HLT anhalten und auf Interrupt warten

IN port lade den Akku mit einem Eingabeport

INR register erhdhe Register um 1

INX reg.-paar |erhdhe Registerpaar um 1 (16 Bit)

JC adresse [springe nur, wenn das Carrybit 1 ist

JM adresse [springe nur, wenn das Vorzeichenbit (S-Bit) 1 ist

JMP adresse |springe immer

JNC adresse [springe nur, wenn das Carrybit 0 ist

JNZ adresse [springe nur, wenn das Ergebnis ungleich Null ist (Z=0)
JP adresse [springe nur, wenn das Vorzeichenbit (S-Bit) 0 ist

JPE adresse |springe nur, wenn das Paritatsbit 1 ist

JPO adresse |springe nur, wenn das Paritatsbit O ist

Jz adresse [springe nur, wenn das Ergebnis gleich Null ist (Z=1)
LDA adresse lade den Akku mit dem Inhalt eines Speicherbytes
LDAX |Boder D [lade den Akku mit Speicherbyte (Adresse in BC oder DE)

Befehl |Operand |Wirkung

LHLD |adresse lade L mit adressiertem Byte, H mit folgendem Byte

LXI rp,konst [lade Registerpaar mit einer 16-Bit-Konstanten

MOV |regl,reg2 [lade Register reg1 mit Register reg2

MVI reg,konst |lade Register mit der Konstanten

NOP tu nichts (Zeitverzdgerung oder Platzhalter)

ORA register bilde das logische ODER des Akkus mit einem Register
ORI konstante [bilde das logische ODER des Akkus mit der Konstanten
ouT port speichere den Akku in den Ausgabeport

PCHL lade den Befehlszahler mit dem HL-Registerpaar (Sprung)
POP reg.-paar |hole das Registerpaar aus dem Stapel , Stapelzeiger + 2
PUSH |reg.-paar |bringe das Registerpaar in den Stapel , Stapelzeiger -2
RAL schiebe den Akku mit dem Carrybit zyklisch links

RAR schiebe den Akku mit dem Carrybit zyklisch rechts

RC Riicksprung nur, wenn das Carrybit 1 ist

RET springe immer aus dem Unterprogramm zuriick

RIM lade den Akku mit dem Interruptregister

RLC schiebe den Akku ohne das Carrybit zyklisch links

RM Riicksprung nur, wenn Vorzeichenbit (S) 1 ist

RNC Riicksprung nur, wenn Carrybit O ist

RNZ Riicksprung nur, wenn Ergebnis ungleich Null ist (Z=0)
RP Riicksprung nur, wenn Vorzeichenbit (S) 0 ist

RPE Riicksprung nur, wenn Paritatsbit 1 ist

RPO Rucksprung nur, wenn Paritatsbit 0 ist

RRC schiebe den Akku ohne Carrybit zyklisch rechts

RST 0-7 starte Interruptprogramm , Befehlszéhler nach Stapel
Rz Riicksprung nur, wenn Ergebnis gleich Null (7=1)

SBB register subtrahiere Register und Carrybit vom Akku

SBI konstante [subtrahiere Konstante und Carrybit vom Akku

SHLD |adresse [speichere L nach adressiertem Byte, H nach folgendem
SIM speichere den Akku in das Interruptregister

SPHL lade den Stapelzeiger mit dem HL-Registerpaar

STA adresse |speichere den Akku in das adressierte Byte

STAX |BoderD [speichere Akku nach Speicherbyte (Adresse in BC oder DE)
STC setze das Carrybit 1

SUB register subtrahiere Register vom Akku

Sul konstante [subtrahiere Konstante vom Akku

XCHG vertausche HL-Registerpaar mit dem DE-Registerpaar
XRA register bilde das logische EODER des Akkus mit einem Register
XRI konstante |[bilde das logische EODER des Akkus mit der Konstanten
XTHL vertausche HL-Registerpaar mit den beiden Stapelbytes

