
Befehl Operand Wirkung Befehl Operand Wirkung

ACI konstante addiere zum Akku die Konstante und das Carrybit LHLD adresse lade L mit adressiertem Byte, H mit folgendem Byte

ADC register addiere zum Akku ein Register und das Carrybit LXI rp,konst lade Registerpaar mit einer 16-Bit-Konstanten

ADD register addiere zum Akku ein Register MOV reg1,reg2 lade Register reg1 mit Register reg2

ADI konstante addiere zum Akku die Konstante MVI reg,konst lade Register mit der Konstanten

ANA register bilde das logische UND des Akkus mit einem Register NOP tu nichts (Zeitverzögerung oder Platzhalter)

ANI konstante bilde das logische UND des Akkus mit der Konstanten ORA register bilde das logische ODER des Akkus mit einem Register

CALL adresse rufe ein Unterprogramm unbedingt ORI konstante bilde das logische ODER des Akkus mit der Konstanten

CC adresse rufe Unterprogramm nur, wenn das Carrybit 1 ist OUT port speichere den Akku in den Ausgabeport

CM adresse rufe Unterprogramm nur, wenn das Vorzeichenbit(S) 1 ist PCHL lade den Befehlszähler mit dem HL-Registerpaar (Sprung)

CMA komplementiere den Akku (Einerkomplement) POP reg.-paar hole das Registerpaar aus dem Stapel , Stapelzeiger + 2

CMC komplementiere das Carrybit PUSH reg.-paar bringe das Registerpaar in den Stapel , Stapelzeiger -2

CMP register vergleiche den Akku mit dem Register (Testsubtraktion) RAL schiebe den Akku mit dem Carrybit zyklisch links

CNC adresse rufe Unterprogramm nur, wenn das Carrybit 0 ist RAR schiebe den Akku mit dem Carrybit zyklisch rechts

CNZ adresse rufe Unterprogramm nur, wenn Ergebnis ungleich Null ist RC Rücksprung nur, wenn das Carrybit 1 ist

CP adresse rufe Unterprogramm nur, wenn Vorzeichenbit (S) 0 ist RET springe immer aus dem Unterprogramm zurück

CPE adresse rufe Unterprogramm nur, wenn Paritätsbit 1 ist RIM lade den Akku mit dem Interruptregister

CPI konstante vergleiche Akku mit der Konstanten (Testsubtraktion) RLC schiebe den Akku ohne das Carrybit zyklisch links

CPO adresse rufe Unterprogramm nur, wenn Paritätsbit 0 ist RM Rücksprung nur, wenn Vorzeichenbit (S) 1 ist

CZ adresse rufe Unterprogramm nur, wenn Ergebnis gleich Null ist RNC Rücksprung nur, wenn Carrybit 0 ist

DAA korrigiere den Akku im BCD-Code RNZ Rücksprung nur, wenn Ergebnis ungleich Null ist (Z=0)

DAD reg.-paar addiere Registerpaar zum HL-Registerpaar (16 Bit) RP Rücksprung nur, wenn Vorzeichenbit (S) 0 ist

DCR register vermindere Register um 1 RPE Rücksprung nur, wenn Paritätsbit 1 ist

DCX reg.-paar vermindere Registerpaar um 1 (16 Bit) RPO Rücksprung nur, wenn Paritätsbit 0 ist

DI sperre alle Interrupts (Interrupt-Flipflop = 0) RRC schiebe den Akku ohne Carrybit zyklisch rechts

EI gib alle Interrupts frei (Interrupt-Flipflop = 1) RST 0 - 7 starte Interruptprogramm , Befehlszähler nach Stapel

HLT anhalten und auf Interrupt warten RZ Rücksprung nur, wenn Ergebnis gleich Null (7=1)

IN port lade den Akku mit einem Eingabeport SBB register subtrahiere Register und Carrybit vom Akku

INR register erhöhe Register um 1 SBI konstante subtrahiere Konstante und Carrybit vom Akku

INX reg.-paar erhöhe Registerpaar um 1 (16 Bit) SHLD adresse speichere L nach adressiertem Byte, H nach folgendem

JC adresse springe nur, wenn das Carrybit 1 ist SIM speichere den Akku in das Interruptregister

JM adresse springe nur, wenn das Vorzeichenbit (S-Bit) 1 ist SPHL lade den Stapelzeiger mit dem HL-Registerpaar

JMP adresse springe immer STA adresse speichere den Akku in das adressierte Byte

JNC adresse springe nur, wenn das Carrybit 0 ist STAX B oder D speichere Akku nach Speicherbyte (Adresse in BC oder DE)

JNZ adresse springe nur, wenn das Ergebnis ungleich Null ist (Z=0) STC setze das Carrybit 1

JP adresse springe nur, wenn das Vorzeichenbit (S-Bit) 0 ist SUB register subtrahiere Register vom Akku

JPE adresse springe nur, wenn das Paritätsbit 1 ist SUI konstante subtrahiere Konstante vom Akku

JPO adresse springe nur, wenn das Paritätsbit 0 ist XCHG vertausche HL-Registerpaar mit dem DE-Registerpaar

JZ adresse springe nur, wenn das Ergebnis gleich Null ist (Z=1) XRA register bilde das logische EODER des Akkus mit einem Register

LDA adresse lade den Akku mit dem Inhalt eines Speicherbytes XRI konstante bilde das logische EODER des Akkus mit der Konstanten

LDAX B oder D lade den Akku mit Speicherbyte (Adresse in BC oder DE) XTHL vertausche HL-Registerpaar mit den beiden Stapelbytes

